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Hierarchical multivariate covariance analysis of metabolic
connectivity
Felix Carbonell1, Arnaud Charil1, Alex P Zijdenbos1, Alan C Evans1,2, Barry J Bedell1,2 for the Alzheimer’s Disease Neuroimaging
Initiative3

Conventional brain connectivity analysis is typically based on the assessment of interregional correlations. Given that correlation
coefficients are derived from both covariance and variance, group differences in covariance may be obscured by differences in the
variance terms. To facilitate a comprehensive assessment of connectivity, we propose a unified statistical framework that
interrogates the individual terms of the correlation coefficient. We have evaluated the utility of this method for metabolic
connectivity analysis using [18F]2-fluoro-2-deoxyglucose (FDG) positron emission tomography (PET) data from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) study. As an illustrative example of the utility of this approach, we examined metabolic
connectivity in angular gyrus and precuneus seed regions of mild cognitive impairment (MCI) subjects with low and high β-amyloid
burdens. This new multivariate method allowed us to identify alterations in the metabolic connectome, which would not have been
detected using classic seed-based correlation analysis. Ultimately, this novel approach should be extensible to brain network
analysis and broadly applicable to other imaging modalities, such as functional magnetic resonance imaging (MRI).
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INTRODUCTION
Alterations in structural, functional, and metabolic connectivity are
increasing recognized as key features of many neurologic and
psychiatric diseases. Conventional brain connectivity analysis is
typically based on the evaluation of interregional correlations.1–8 A
major limitation associated with this approach, however, is that
correlation coefficients are derived from both the covariance and
the variance of the data. As such, while group differences in
covariance (connectivity) may exist, this information may not be
captured by the correlation coefficient due to differences in the
variance terms. It has been reported that several factors may affect
the size of the Pearson correlation coefficient, thereby yielding
misleading interpretations.9 These factors include the extent of
variability in the data (e.g., range restriction10), differences in
the shape of the data distrubutions, lack of linearity, outliers,
characteristics of the sample, and measurement error.9 As such,
the between-group comparisons of interregional correlations
may be influenced by these factors. For instance, if the variance

significantly differs across groups, then the interregional correla-
tions tend to decrease for the group with higher variance. A
potential source of methodological error leading to differences in
group variances may occur when data have been collected in a
multicenter study and the groups are not appropriately balanced
at the different sites. Further, the variance in connectivity analysis
is related not only to methodolgical issues, but also to biologic
sources, including interindividual differences in functional neuro-
anatomy, variability in the regional distribution of activity, and
differential levels of hormonal factors, stress, and anxiety.11

Proper assessment of connectivity, therefore, requires a unified
statistical framework that interrogates the individual terms of
the correlation coefficient. To this end, we propose a novel,
hierarchical, multivariate approach based on between-group
comparisons of 2 × 2 variance–covariance matrices. Our approach
is based on hierarchical testing of between-group differences in
the correlation coefficient and its component differences arising
from the covariance and variance of the data. This multivariate
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approach is particularly useful when between-group differences in
connectivity patterns are subtle and cannot be detected using
more traditional univariate approaches, such as seed-based
correlations. In addition, this new method has the advantage of
including the conventional analysis of correlation coefficients as a
particular case.
Metabolic connectivity examines the relationship between

glucose metabolism in different brain regions. In their seminal
paper, Horwitz et al1 described across-subject metabolic correla-
tions between brain regions based on [18F]2-fluoro-2-deoxyglu-
cose (FDG) positron emission tomography (PET) scans, and
identified strong correlations between homotopic regions and
homologous regions in the left and right hemispheres. This work
showed that correlation patterns based on FDG PET were
consistent with anatomic and functional data, thereby validating
the assertion that functional interactions reflect underlying
anatomic pathways.1 The earliest studies of metabolic connectivity
in Alzheimer’s disease (AD) patients were performed by Metter
et al12 and Horwitz et al,13 who showed that AD patients had fewer
consistent partial correlation coefficients compared with healthy
control subjects. A more formal statistical approach, called SSM
(Scaled Subprofile Model), was proposed by Moeller et al14 for the
study of brain metabolic networks. On the basis of Principal
Components Analysis (PCA), SSM represents regional glucose
metabolism profiles as a combination of region-independent
global effects, a group mean pattern, and a mosaic of interacting
AD-related networks.15,16 Metabolic connectivity approaches based
on multivariate data decomposition techniques (e.g., PCA and
Independent Components Analysis) have also been proposed in
recent years.17–21 Several studies have systematically explored
whole-brain metabolic connectivity patterns using seed-based
correlation analyses. Under the basic general linear model
assumptions, the seed-based correlation approach uses the mean
FDG uptake in a seed region as a covariate-of-interest in a classic
statistical parametric mapping analysis, and correlates it with all
other voxels over the entire brain. Using this approach, Mosconi
et al2 performed whole brain, voxel-based correlation analyses to
assess functional interactions of the entorhinal cortex. More
recently, Lee et al5 extended this approach for the establishment
of normative data for interregional metabolic connectivity. Our
group has recently explored the relationship between β-amyloid
burden and metabolic connectivity patterns at early stages of AD
using a seed-based, metabolic correlation analysis.22 Specifically,
we have shown that alterations in metabolic connectivity are
related to the presence of fibrillar, β-amyloid deposits and are not a
function of genotype. While our previous analysis22 clearly showed
reduced metabolic correlations as a function of increased amyloid
burden, the seed-based correlations for several ‘hub’ regions, such
as the precuneus, a key node of the default-mode network (DMN),
unexpectedly did not show any significant group differences in
metabolic connectivity. Given that previous studies have shown
aberrant functional connectivity, based on resting-state functional
magnetic resonance imaging (MRI) data, between posterior
cingulate/precuneus and other brain regions as a function of β-
amyloid positivity,23 we sought to further interrogate metabolic
connectivity through a more sophisticated analysis strategy that
could better capture the relationship between disease-related
alterations in the functional and metabolic connectomes.
In this paper, we evaluate the utility of the proposed HMC

(Hierarchical Multivariate Covariance) analysis using FDG PET data
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
study. Our main objective is to show that traditional univariate
approaches to metabolic connectivity, such as seed-based
correlation analysis, can fail to reveal important interregional
relationships, while the HMC analysis facilitates a more thorough
exploration of the metabolic network architecture. To this end, we
have applied this HMC analysis to FDG PET data from mild
cognitive impairment (MCI) subjects with low and high β-amyloid

burdens, and we provide results from two illustrative cortical hub
regions (angular gyrus and precuneus). These results reveal
important new information concerning progressive metabolic
disconnection within the DMN of MCI patients.

MATERIALS AND METHODS
Subjects and Image Acquisition
Data used in the preparation of this article were obtained from the ADNI
database (http://adni.loni.usc.edu). The ADNI was launched in 2003 by the
NIA (National Institute on Aging), the NIBIB (National Institute of Biomedical
Imaging and Bioengineering), the FDA (Food and Drug Administration),
private pharmaceutical companies, and non-profit organizations, as a $60
million, 5-year public private partnership. The primary goal of ADNI has been
to test whether serial MRI, PET, other biologic markers, and clinical and
neuropsychological assessment can be combined to measure the progres-
sion of MCI and AD. Determination of sensitive and specific markers of very
early AD progression is intended to aid researchers and clinicians to develop
new treatments and monitor their effectiveness, as well as lessen the time
and cost of clinical trials. The ADNI is the result of efforts of many
coinvestigators from a broad range of academic institutions and private
corporations, and subjects have been recruited from over 50 sites across the
United States and Canada. The initial goal of ADNI was to recruit 800 subjects,
but ADNI has been followed by ADNI-GO and ADNI-2. To date, these three
protocols have recruited over 1,500 adults, ages 55 to 90, to participate in the
research, consisting of cognitively normal older individuals, people with early
or late MCI, and people with early AD. The follow-up duration of each group
is specified in the protocols for ADNI-1, ADNI-2, and ADNI-GO. Subjects
originally recruited for ADNI-1 and ADNI-GO had the option to be followed in
ADNI-2. For up-to-date information, see www.adni-info.org.
The cohort for this study consisted of 276 ADNI participants diagnosed

with MCI who had available [18F]florbetapir PET, FDG PET, and 3D T1-
weighted anatomic MRI scans. A detailed description of the MRI and PET
image acquisition protocols can be found at http://adni.loni.usc.edu/
methods. This study was approved by the Institutional Review Boards of all
of the participating institutions. Informed written consent was obtained
from all participants at each site.

Image Processing
All MRI and PET images were processed using the PIANO software package
(Biospective Inc., Montreal, QC, Canada). T1-weighted MRI volumes
underwent image nonuniformity correction using the N3 algorithm,24

brain masking, linear spatial normalization utilizing a 9-parameter affine
transformation, and nonlinear spatial normalization25 to map individual
images from native coordinate space to MNI reference space using a
customized, anatomic MRI template derived from ADNI subjects. The
resulting image volumes were segmented into gray matter, white matter,
and cerebrospinal fluid using an artificial neural network classifier26 and
partial volume estimation.27 The gray matter density map for each subject
was transformed to the same final spatial resolution (i.e., resampled to the
same voxel size and spatially smoothed) as the FDG PET data to account
for confounding effects of atrophy in the statistical model. The cerebral
mid-cortical surface (i.e., the midpoint between the pia and the white
matter) for each hemisphere was extracted to allow for surface projection
of PET data using a modified version of the CLASP algorithm.28

The florbetapir PET and FDG images underwent several preprocessing
steps, including frame-to-frame linear motion correction, smoothing using
a scanner-specific blurring kernel, and concatenation of dynamic frames
into a static image. The PET volumes were linearly registered to the subject
T1-weighted MRI and, subsequently, spatially normalized to reference
space using the nonlinear transformations derived from the anatomic MRI
registration. Voxelwise standardized uptake value ratio (SUVR) maps were
generated from both florbetapir and FDG PET using full cerebellum and
pons as the reference regions, respectively. The cortical SUVR measures
were projected onto the cortical surface, and the data from each subject
were mapped to a customized surface template by non-rigid 2D surface
registration for visualization purposes.29

Subject Classification
The mean [18F]florbetapir SUVR was computed from a composite bilateral
region-of-interest (ROI) comprised of the precuneus, posterior cingulate,
and medial frontal cortex, for each subject (SUVRROI). A Regularized
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Discriminant Analysis30 was performed to determine the optimal threshold
to separate subjects into two distinct classes based on individual SUVRROI
measurements, as previously described.22 Subjects with an SUVRROI value
of ≤ 1.22 were designated as Amyloid-Low (AβL), and this group consisted
of 139 subjects with an average SUVRROI value of 1.03 ± 0.08 (mean± s.d.).
The remaining 137 subjects, with average SUVRROI values of 1.50 ± 0.16,
were classified as Amyloid-High (AβH).

Hierarchical Multivariate Covariance analysis
A voxelwise, two-way analysis-of-covariance model that included gender
and apolipoprotein E ε4 genotype as categorical variables, age and mini-
mental state exam as global covariates, as well as gray matter density as a
voxelwise covariate was fitted to the FDG SUVR data. The apolipoprotein E
ε4 status was included to eliminate any potential, misleading differences
due to genotype, while gray matter density was included with the purpose
of minimizing potential confounds related to intersubject differences in
brain atrophy.31,32 The FDG SUVR residuals resulting from this model were
used for the hierarchical multivariate covariance analysis.
The average FDG SUVR values were computed within the angular gyrus

and precuneus ‘seed regions’ for each subject. These two seeds were
selected based on our previous metabolic connectivity analysis.22 In
particular, these seeds were identified as ‘hubs’ (i.e., highly correlated
regions) in each of the two groups. The hub locations were determined as
the local maximum of our previously defined metabolic connectivity
strength measure. The seed regions consisted of a 6-mm-radius sphere
centered at the following MNI space coordinates: (56, − 48, 34) for the right
angular gyrus and (8, − 56, 40) for the right precuneus.
For each group of subjects, variance maps, var(v), and seed-based

covariance maps, cov(s,v), were generated by covarying the average FDG
SUVR within the seed region, s, with the FDG SUVR from all other voxels, v,
over the entire brain. In contrast to seed-based cross-correlation maps r(s,v),
these seed-based covariance maps cov(s,v) are derived from the covariance
measure, rather than the Pearson correlation coefficient. Effectively, seed-
based cross-correlation maps can be interpreted as voxelwise, variance-
normalized versions of the seed-based covariance maps. Seed-based
covariance analysis involves between-group comparison of the correspond-

ing 2× 2 variance–covariance matrix, Σðs; vÞ ¼ varðsÞ covðs; vÞ
covðs; vÞ varðvÞ

� �
,

where var(s) denotes the variance of the FDG SUVR at the seed location.
Between-group differences in the variance–covariance matrices, Σðs; vÞ,

can arise from several conditions, specifically: (1) proportionality of the
matrices, (2) different variances/covariance, and (3) different correlations.
More formally, possible relations between two covariance matrices, Σ1ðs; vÞ
and Σ2ðs; vÞ, can be expressed as the following hypotheses:
H1: Σ1ðs; vÞ ¼ Σ2ðs; vÞ
H2: Σ1ðs; vÞ ¼ cΣ2ðs; vÞ for some unknown positive constant c (i.e.,
Σ1ðs; vÞ and Σ2ðs; vÞ are proportional matrices)
H3: Σ1ðs; vÞ ¼ DΣ2ðs; vÞD for some unknown positive definite diagonal
matrix, D (i.e., Σ1ðs; vÞ and Σ2ðs; vÞ have equal correlation coefficients)
H4: Σ1ðs; vÞand Σ2ðs; vÞ are arbitrary matrices
Hypothesis H1 is the classic null model for assessing equality between

two different covariance patterns, Σ1ðs; vÞ and Σ2ðs; vÞ, which is usually
tested against the alternative model H4 to establish that no particular
relationship exists between the two patterns. Hypothesis H2 is a null model
for the case of proportional covariance patterns, which may occur in the
presence of a global scaling factor affecting one of the two groups
under study. Finally, hypothesis H3 covers the typical null model with
expectation of equality in correlation coefficients, which has been the
standard hypothesis in current metabolic seed-based correlation
analysis.5,7,22

According to Seber,33 the classic method for testing H1 against H4 is
based on a likelihood ratio test T0 (see definition in the Supplementary
Material). Given that the hypothesis Hi is nested in the hypothesis Hi+1

(i = 1, 2, 3),Manly and Rayner34 showed that the likelihood ratio test, T0, can
be hierarchically decomposed into three different test components, T1, T2,
and T3, in such a way that T0 = T1+T2 +T3 (see definitions of T1, T2, and T3 in
the Supplementary Material). Moreover, each of these three components
tests the hypothesis Hi against the hypothesis Hi+1 (i = 1, 2, 3) in a
hierarchical manner. The T3 statistic tests the null hypothesis of the two
groups having equal correlations (H3) against the alternative hypothesis of
the two groups having arbitrary covariance matrices (implying unequal
arbitrary correlation coefficients, H4). Since the hypothesis H2 is a particular
case of the hypothesis H3 (i.e., proportional covariance matrices imply
equal correlations), the null hypothesis H2 can be tested (using the T2

statistic) against the alternative hypothesis H3. Thus, rejection of H2 due to
statistically significant, high values of T2 would imply having two groups
with different variances and covariance terms, but equal correlation co-
efficients. Testing the hypothesis H2 against the hypothesis H3 is extremely
useful to reveal subtle, seed-based metabolic connectivity patterns that are
typically obscured either by a relative increase in data variability in one of
the groups or by a cross-relationship between variability (variance) and
covariability (covariance) between groups. Finally, the T1 statistic tests the
null hypothesis of the two groups having equal covariance matrices (H1)
against the alternative hypothesis of the two groups having proportional
covariance matrices (H2).
Therefore, in our voxelwise hierarchical testing procedure, T3(s,v) is first

tested to assess whether it is significantly large in some regions, V3. If this
observation is the case, then between-group differences occur in the
correlations r(s,V3) between the seed and the composite of brain regions
denoted by V3. T2(s,v) is then assessed for significance at the remaining brain
regions which do not include V3. If statistically significantly large values of
T2(s,v) are obtained in some regions, V2, then correlations, r(s, V2), are
assumed to be equal and between-group differences occur in either the
covariance, cov(s, V2), or the variance, var(V2). Finally, T1(s,v) is assessed for
significance at the remaining brain regions exclusive of V3 and V2. If T1(s,v) is
statistically significant in a region V1, then the variance–covariance matrices
Σðs; V1Þ are assumed to be proportional across groups; otherwise, they are
assumed to be equal in the remaining voxels. An issue that can affect
interpretation is that test T2 does not discriminate between differences
arising from the covariance, cov(s, V2), and differences coming from the
variances, var(V2) and var(s). To overcome this limitation, we have considered
a parallel likelihood ratio test for the variance term. Although several tests
have been proposed for between-group comparisons of the variance (e.g.,
Levene’s test), we took advantage of the fact that the variance term can be
considered as a one-dimensional variance–covariance matrix, and have
tested differences in variance using the likelihood ratio test, T0, with one
degree of freedom. Given that each of these t-statistics follows a χ2

distribution at each voxel v (see expressions for the corresponding degrees
of freedom in Supplementary Material), we used the false discovery rate35

(FDR) procedure at α=0.05 to control for multiple comparisons.

RESULTS
Subject characteristics are reported in Table 1. Although the whole
sample was not equally distributed between males and females, the
association between gender and amyloid status was not statistically
significant (P= 0.79). The age of AβH subjects (74.22± 7.02) was
significantly higher than that of AβL subjects (71.47±8.60)
(P=0.002). There was also a statistically significant main effect of
amyloid status on mini-mental state exam (Po0.001).
The variance maps for the AβL and AβH groups are shown in

Figure 1. Both groups show high across-subject variability in the
occipital lobe. Figure 1C shows the T0-statistic map for the
between-group comparison of the variance maps. Despite the
presence of some small clusters of relatively high T0 values in the
left entorhinal cortex, right middle/superior temporal gyrus, right
pars orbitalis, and right Rolandic operculum, there were not any
statistically significant differences. In particular, there were no
statistically significant between-groups differences in variance at

Table 1. Summary of subject characteristics

All subjects AβL AβH

Sample size 276 137 139
SUVRROI 1.26± 0.27 1.03± 0.08 1.50± 0.16
Age 72.83± 7.96 71.47± 8.60 74.22± 7.02
Gender (F/M) 119/157 61/78 58/79
APOE ε4 (carrier/non-
carrier)

132/144 35/102 98/41

MMSE 27.34± 3.25 28.22± 2.44 26.45± 3.71

Abbreviations: AβH, Amyloid-High; AβL, Amyloid-Low; MMSE, mini-mental
state exam; APOE, apolipoprotein E; ROI, region of interest; SUVR,
standardized uptake value ratio.
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either the right angular gyrus seed (T0 = 1.815, P= 0.17) or the right
precuneus seed (T0= 1.827, P= 0.18).
Conventional seed-based correlation maps and the T3-statistic

maps for the right angular gyrus are provided in Figure 2. The AβH
group showed reduced intrahemispheric and interhemispheric
correlations compared with the AβL group, especially between the
seed and the left fusiform gyrus, bilateral paracentral lobule,
bilateral occipital-temporal regions, and left precentral and
postcentral gyri (Figure 2C). Despite the fact that the T3-statistic
(Figure 2D) and the Z-test (Figure 2C) are not mathematically
equivalent, they yield very similar results. Effectively, correlation
analysis is a particular case of the generalized covariance analysis
developed in this paper. The covariance maps for the right angular
gryus are shown in Figure 3. The FDR-thresholded T2-statistic map
resulting from the seed-based covariance analysis (Figure 3C)
shows between-group metabolic connectivity differences
between the right angular gyrus and small regions, including
the right middle temporal gyrus, the right Rolandic operculum,
and the left entorhinal cortex, which were not observed in the T3
map (Figure 2D). These additional metabolic connectivity differ-
ences are likely produced by the small differences in variance
observed in Figure 1.
Figure 4 shows the conventional seed-based correlation maps

and the T3-statistic map resulting from the seed-based covariance
analysis for the precuneus seed region. Note that no between-
groups differences were observed in the correlation structure as a
function of β-amyloid status (Figure 4D). In contrast, Figure 5C
shows that the T2-statistic map produced several regions of
statistically significant differences, particularly between the pre-
cuneus and extended cortical regions, including the right middle
and superior temporal gyri, right pars orbitalis, left entorhinal
cortex, bilateral Rolandic operculum, and bilateral posterior
cingulate cortex. These findings provide evidence that, despite
the correlation coefficients not being statistically significantly
different between AβL and AβH groups, there were, in fact,
metabolic connectivity differences. These differences could arise
from either the covariance or the variance terms. While some of
these differences are likely the result of differences in group

variance terms (Figure 1C), not all of these differences can be simply
explained by the variance given that the statistically significant
regions in Figure 5C are more spatially extended than those of
Figure 3C. In these regions, the detected connectivity is associated
with the covariance. Interestingly, while the small between-group
differences in variance observed in Figure 1 are not sufficient to
result in the significant differences observed in Figure 5C, these
differences counterbalance the covariance term in such a way to
effectively eliminate differences in the seed-based correlation
structure (Figure 4).
To assess the effects of high variance on the T2-statistic, we

placed a seed in the right middle temporal gyrus, which is the
region of highest between-group differences in variance
(Figure 1). The resulting T2-statistic map (Supplementary Figure
1C) revealed particular regions (but not the whole cortex) of
statistically significant connectivity differences, including bilateral
inferior temporal gyrus, fusiform gyrus, and precuneus. This result
is fully consistent with Figure 5, which showed that the T2 map
relative to the right precuneus was statistically significant at the
right middle temporal gyrus.

DISCUSSION
In this work, we have introduced a new statistical framework for
connectivity analysis. As an illustrative example of the utility of this
approach, we examined metabolic connectivity in MCI subjects
with low and high β-amyloid burdens. This new, multivariate
method allowed us to identify alterations in the metabolic
connectome which would not have been detected using classic
seed-based correlation analysis.
By explicitly examining the covariance, we were able to identify

metabolic connectivity patterns that were not observed in our
previous study,22 due to the relatively high variability in FDG SUVR
measures across subjects. While not statistically significant, the AβL
group appeared to have a higher variability than the AβH group in
particular brain regions, such as the temporal–parietal areas. The
relatively lower variability in the AβH group may be explained by
transition to a state of vulnerability to AD-related pathology,

Figure 1. Representative surface views (left-to-right: left lateral, right lateral, left medial, and right medial) of the [18F]2-fluoro-2-deoxyglucose
(FDG) standardized uptake value ratio (SUVR) variance maps for the Amyloid-Low (AβL) (A) and Amyloid-High (AβH) groups (B). Although not
statistically significant, there are some small differences in variance in regions including the right middle temporal gyrus, right Rolandic
operculum, and left entorhinal cortex (C).
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Figure 2. Seed-based correlation maps for the right angular gyrus. Maps are provided for the Amyloid-Low (AβL) group (A), Amyloid-High
(AβH) group (B), as well as false discovery rate (FDR)-thresholded Z-statistic and T3-statistic for the AβL versus AβH group differences (C, D). The
arrows indicate the seed region. Although Z and T3 are not mathematically equivalent, they show similar regions of significantly reduced
correlations in the AβH group, especially with the left fusiform gyrus, bilateral paracentral lobule, bilateral inferior frontal gyrus, and left
precentral and postcentral gyri.

Figure 3. Seed-based covariance maps for the right angular gyrus. Maps are provided for the Amyloid-Low (AβL) group (A), Amyloid-High
(AβH) group (B), as well as false discovery rate (FDR)-thresholded T2-statistic for the AβL versus AβH group comparison (C), which shows
differences between the right angular gyrus and the right middle temporal gyrus, the right Rolandic operculum, and the left entorhinal cortex.
These additional metabolic connectivity differences are likely produced by the small differences in variance observed in Figure 1.
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Figure 4. Seed-based correlation maps for the right precuneus. Maps are provided for the Amyloid-Low (AβL) group (A), Amyloid-High (AβH)
group (B), as well as unthresholded and false discovery rate (FDR)-thresholded T3-statistic for the AβL versus AβH group comparison (C, D). The
T3-map did not show any statistically significant between-groups differences in correlation (D).

Figure 5. Seed-based covariance maps for the right precuneus. Maps are provided for the Amyloid-Low (AβL) group (A), Amyloid-High (AβH)
group (B), as well as false discovery rate (FDR)-thresholded T2-statistic for the AβL versus AβH group comparison (C), which shows several
regions of statistically significant differences, particularly between the precuneus and extended regions including right middle and superior
temporal gyri, right pars orbitalis, left entorhinal cortex, bilateral Rolandic operculum, and bilateral posterior cingulate cortex.
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including β-amyloid deposition and greater cognitive deficits.
Conversely, subjects in the more heterogeneous AβL groups may
be at different, earlier stages of disease progression. Our results are
in concordance with those of Walhovd et al,36 who showed
statistically significant differences, by Levene’s test, in FDG PET
variances between MCI and normal controls for several brain
regions, including the precuneus and the posterior cingulate cortex.
In this particular study, we assessed the metabolic connectivity

associated with the angular gyrus, the precuneus, and the middle
temporal gyrus. The angular gyrus mediates language and
semantic processing, as well as spatial attention and orientation,
and is a key parietal node of the DMN. Our results are consistent
with those reported by Jacobs et al,37 which implicated strong
connectivity patterns between the angular gyrus and other brain
areas as a driving factor for the involvement of the parietal lobe in
AD. With respect to the precuneus, our results agree with those of
Salmon et al,19 who showed that the precuneus was a core area in
AD and found that it is associated with three different metabolic
covariance networks, as determined by PCA. We were able to
identify statistically significant differences between AβL and AβH
groups for the precuneus based on covariance, but not based on
correlation (Figures 4 and 5). The precuneus is a key hub of the
DMN. Buckner et al38 have shown that brain regions accumulating
greater levels of β-amyloid correspond to functional hubs
identified by increased functional connectivity with other brain
regions in AD patients. Our new finding directly implicates
β-amyloid accumulation in the progressive metabolic disconnec-
tion within the DMN of MCI patients. The increased sensitivity of
our approach likely arises from increased intragroup variance in
FDG PET signal that is better handled by covariance analysis than
by correlation analysis. Indeed, the cross-relationship observed
between variances and covariance in the two β-amyloid groups
might lead to the false conclusion of a lack of connectivity
disruption when solely using correlations coefficients. On the basis
of these data, we can conclude that the intrinsic relationship
between β-amyloid accumulation and metabolic connectivity is a
clear pathologic feature of MCI/AD, and should be considered in
conjunction with other pathologic features and imaging biomar-
kers, such as regional β-amyloid deposition and cerebral glucose
hypometabolism. The novel data revealed by our HMC approach
are consistent with the observations of Drzezga et al,23 which
implicate the posterior cingulate/precuneus as a region highly
susceptible to β-amyloid-related alterations in functional con-
nectivity. The relationship between functional connectivity (based
on the blood oxygen level-dependent signal) and metabolic
connectivity (based on glucose uptake/metabolism) is currently
poorly understood, and they cannot be presumed to be proxies of
one another. It is conceivable that amyloid-related pathology may
give rise to a decoupling of blood flow and metabolism such that
they react differently to cognitive demand, exhibit a different
disease time course, and respond differently to putative ther-
apeutic intervention. It is, therefore, essential to examine the
connectivity properties of both flow-related and metabolic
markers. By properly assessing the covariance structure of FDG
PET data, we have gleaned further insight into the effects of
β-amyloid on cerebral metabolism and the apparent similarities to
alterations in cerebrovascular physiology and neurovascular
coupling. These intriguing results support future studies designed
to examine connectivity patterns based on different modalities
acquired from the same subjects.
From a methodological perspective, our method shares

similarities to the approach employed by Salmon et al19 and
Walhovd et al36 in that the statistical tests acted over covariances
and variances, rather than over correlations. As such, in contrast to
the classic seed-based correlation analysis, our multivariate appr-
oach allows for a proper comparison with PCA. The hierarchical
t-tests described here facilitate comparisons with PCA networks
computed by either covariance or correlation matrices. The T3-test

is comparable to a PCA computed over correlation matrices, while
the T2-test is comparable to a PCA based on covariance matrices.
As such, our multivariate acts as a unified framework for combining
statistical comparisons over connectivity structures arising simul-
taneously from covariances, variances, and correlations.
The multivariate approach introduced in this paper can be

extended in several ways. While we have used the seed-based
covariance approach for the comparison of two groups of subjects
with different levels of cortical β-amyloid, our results can be
readily extended to more than two groups. The expressions for
the likelihood ratio tests presented in the Supplementary Material
cover the general case of more than two variance–covariance
matrices. This approach can also be applied to higher dimensional
variance–covariance matrices. The two-dimensional case pre-
sented here is determined from the interaction between an a
priori selected seed and any other voxel in the brain. A more
general, multidimensional case could include more than one
pivotal seed. In such a case, we could test not only for seed-based
connectivity, but also for network-based connectivity patterns
determined by any a priori network. Our methodology could also
be potentially extended to longitudinal data. In this case, the
expressions for the likelihood ratio tests presented in the Supple-
mentary Material would need to be modified to cover suitable
within-subject correlations patterns (e.g., paired samples). While,
to the best of our knowledge, the requisite theory has not yet
been developed and is beyond the scope of this manuscript, we
believe that such a theoretical formulation could be realized.39

Although we have used a relatively large sample size in this study,
our methodology can be adapted to increase the statistical power
in the case of smaller sample size.40 Specifically, it was shown by
Rayner et al40 that corrected hierarchical tests (resulting from
multiplying the tests Ti by certain correcting factors) produce
actual sizes closer to the nominal sizes for small samples. For
larger sample sizes, the hierarchical tests have desirable power
properties, as the proposed correcting factor tends to 1 for large
sample size. Our hierarchical testing approach can also be used to
assess the equality/proportionality of covariance matrices to use
the most appropriate model for multivariate tests comparing
mean signals, as well as for selection of optimal discriminant
analysis functions. Finally, this framework may be generalized to
other connectivity measures, such as functional connectivity
derived from blood oxygen level-dependent functional MRI,
potentially providing unique insights into disease-related altera-
tions in the functional architecture of the brain.
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